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Abstract A critical assessment is provided of the typical

laminate-level, classical meso-scale, and fracture-mechanics-

enriched meso-scale material models for continuous-fiber

reinforced polymer–matrix composites. Suitability of these

material models for the use in structural-mechanics and

ballistic-resistance computational analyses of the composite

laminates is investigated by carrying out a series of com-

putational studies in which a composite laminate is either

subjected to in-plane tension/compression or bending or

used as a target plate and impacted by a solid right circu-

lar cylindrical projectile. The results obtained suggest

that the fracture-mechanics enriched meso-scale composite-

laminate material model, in which the fracture-mechanics

character of micro-cracking is included within a damage-

mechanics formulation, is currently the best compromise

between computational efficiency and physical-reality/

fidelity.

Introduction

Polymer–matrix composite laminates are among the most

advanced commercially available materials nowadays.

While they are widely used in aerospace and defense-

related industries, their application in construction, auto-

motive, and sporting-good industries is also quite common.

The main reason for the aforementioned widespread use of

the composite materials is their ability to simultaneously

meet a variety of functional and manufacturing require-

ments. For example, the new Boeing 787 Dreamliner is

primarily made of carbon-fiber-reinforced epoxy–matrix

composites which, in addition to having outstanding

mechanical properties, do not suffer from the similar

manufacturing constraints as their metallic counterparts/

alternatives, allowing a higher degree of optimization of

the 787 aerodynamics. Furthermore, the composite air-

frames weigh less and are stronger than the conventional

airframes, which lead to improvements in the vehicle’s

operating efficiency and performance. Finally, carbon-

fiber-reinforced epoxy–matrix composites tend to resist

corrosion and fatigue, the two phenomena, which are well

established to cause gradual degradation and ultimate

failure of metallic airframes.

Composite materials like the carbon-fiber-reinforced

epoxy–matrix laminates mentioned above fall into the

category of so-called ‘‘structural-grade’’ composites. The

main figures of merit in this class of composites are the

density-normalized stiffness. (i.e., the specific stiffness)

and density-normalized strength (i.e., the specific strength).

Consequently, traditional material models for this class of

composites tend to only consider the effects of constituent

materials, composite-material architecture, and processing

parameters on the elastic and plastic material response

while the role of internal damage is downplayed. Never-

theless, structural components made of this type of com-

posites may experience in service a variety of predicted and

unpredicted loadings (including impact). Under such con-

ditions, the composite material may develop external and

internal damage, which may seriously compromise its

stiffness and strength properties. This is the main reason

that newer structural-composite material models contain
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algorithms for assessing the initiation and progression of

damage in these materials and their interaction with

material deformation processes.

When a material model for structural-grade composites

is being developed, one of the first issues to be addressed is

the main length-scale (and in the case of dynamic material

response, the time scale) at which the model should be

developed. While there are various attempts in the litera-

ture to model all the critical material length-scales using

different multi-scale modeling approaches, the most com-

prehensive and thorough composite-material models are

still those in which the effect of material microstructure/

architecture is accounted for at the lamina/ply level (the

so-called ‘‘meso-scale’’) [1–3]. Finer scale material models

such as micro-mechanics [4], yarn-based [5], and molec-

ular-level [6] material models, which take into account

more discrete aspects of material behavior (e.g., micro-

cracking, fiber-matrix de-bonding, etc.) and material

microstructure (e.g., topology of the fiber/matrix interfaces,

the nature of fiber/matrix bonding, polymer conformation

near the fiber/matrix interfaces, etc.), while being quite

beneficial in providing more insight into the phenomena/

processes associated with damage nucleation/evolution, are

typically quite expensive computationally and, hence, not

generally suitable for use in the component-level struc-

tural-response analyses. On the other hand, computation-

ally efficient composite-laminate-level material models in

which the effect of ply level microstructure is not directly

addressed [7], generally lack sufficient physical insight into

the phenomena and processes behind various inter-lamina

deformation and damage nucleation/evolution mechanisms

and, hence, are not usually considered reliable.

Within the composite-laminate-level material models,

the entire laminate is initially homogenized into a single

material, free of the inter-lamina boundaries. A schematic of

the composite laminate in this case is displayed in Fig. 1a.

Within the meso-scale material models, as mentioned

above, material microstructure at the lamina-level is used

to assess the effective (homogenized) ply properties/

mechanical response. In this process, the main intra-lamina

damage mechanisms (fiber breakage, matrix transverse

micro-cracking, and fiber/matrix de-bonding) are recog-

nized/modeled. The composite laminate is then modeled

as a stack of (homogenized) plies/laminae, joined along

their contact interfaces (modeled as homogenized two-

dimensional material-like entities). A schematic of the

composite-laminate architecture as considered within the

meso-scale framework is displayed in Fig. 1b. The material

model for the composite laminate then entails definitions of

the homogenized-material models for each ply and for the

ply interfaces. A comprehensive review of the literature

carried out as part of the present work revealed that, while

several meso-scale material models have been proposed,

the one developed over the last 20 years by Ladeveze and

co-workers [1–3] appears to be the most advanced. Con-

sequently, the first objective in the present work is to

provide a critical assessment of this model (the ‘‘Ladeveze

meso-scale model,’’ in the following).

Within the classical meso-scale material models men-

tioned above, intra-lamina and inter-lamina damage is

assumed to be distributed continuously within the laminate.

While this assumption is reasonable for some modes of

damage (e.g., fiber breakage within the yarns, fiber/matrix

de-bonding, diffuse delamination (inter-lamina separation),

it cannot be easily justified in the case of transverse micro-

cracking. Transverse micro-cracking is normally found in

laminae, which are in-plane loaded primarily in the direc-

tion normal to the fiber/yarn axis. In this case, lamina

damage is not manifested in the form of nano-/sub-micron-

scale flaws/defects (considered as continuously varying

damage) but rather in the form of discrete micro-cracks,

which traverse the entire lamina thickness and frequently

extend over the entire lamina width. These micro-cracks

tend to appear at nearly equal intervals/spacing within the

given section of a lamina and this spacing decreases with

further loading by the process of nucleation of micro-cracks

at the locations halfway between the previously formed

micro-cracks. Upon nucleation, these micro-cracks tend to

propagate almost instantaneously over the entire lamina

(a)

(b)

(c) 0°

90°

Transverse  
Micro-crack 

0°

90°

Ply Interface 

Fig. 1 Schematic representation of the composite laminate as

represented by: a the laminate-scale material model; b the classical

meso-scale model, and c the fracture-mechanics enriched meso-scale

model
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width and, hence, they cannot be modeled in the same way

as diffuse/distributed damage mentioned above. In fact,

transverse micro-cracking phenomenon requires the use of a

fracture-mechanics approach [8]. More specifically, since

micro-cracks tend to extend instantaneously over the entire

lamina width, a finite fracture-mechanics approach is nee-

ded [9, 10]. To account for the effect of micro-cracking,

Ladeveze et al. [4] considered first an approach in which the

formation of transverse micro-cracks was modeled explic-

itly through the use of through-the-thickness intra-lamina

cohesive finite elements, Fig. 1c. While this approach was

found to account reasonably well for the main features of

transverse micro-cracking, it turned out to be prohibitively

expensive when used in component-level structural analy-

ses. To overcome this shortcoming of their model, Ladev-

eze and co-worker [11] proposed that micro-cracking be

modeled using a set of continuum-level damage variables

(similar to those used to model diffuse damage). However,

to account for the discrete micro-cracking nature of this

damage phenomenon, a finite fracture-mechanics approach

is used to model transverse micro-cracking nucleation/

evolution processes. The second main objective of the

present work is then to critically overview/assess the frac-

ture-mechanics enriched meso-scale material model of

Ladeveze and co-worker [11].

Finally, the third main objective of the present work is to

carry out a comparative computational investigation of a

prototypical composite laminate being subjected to simple

tension/bending structural loading or impacted by a solid

right circular cylinder (i.e., a fragment simulating projec-

tile, FSP), when the plate is modeled using either a lami-

nate-level model, a classical meso-scale model, or a

fracture-mechanics enriched meso-scale model.

The organization of the article is as follows. An over-

view of the laminate-level composite material model is

provided in ‘‘Laminate-level composite-material model’’

section. The classical meso-scale composite-material

model of Ladeveze and co-workers [1–3] is critically

assessed in ‘‘Meso-scale composite-material model’’ sec-

tion. In ‘‘Fracture-mechanics-enriched meso-scale model’’

section, a similar critical review is provided of the fracture-

mechanics-enriched meso-scale mechanical model pro-

posed by Ladeveze and co-worker [11]. Results of the

composite laminate target plate impacted by an FSP are

presented and discussed in ‘‘Results and discussion’’ sec-

tion. A summary of the main results obtained in the present

work is provided in ‘‘Summary and conclusions’’ section.

Laminate-level composite-material model

Since the composite-laminate-level material model was

presented in details in our previous work [7], only a brief

overview of this model will be presented in the remainder

of this section. As mentioned earlier, within this model,

lamina-level material response is homogenized in order to

obtain laminate-level material response. Consequently,

deformation/damage processes associated with the inter-

lamina boundaries had to be sacrificed.

The elastic response of each lamina, before homogeni-

zation, is treated as orthotropic (or planar isotropic) and

linear. The yarn orientation of each lamina within the

laminate, along with the thickness of each lamina, is then

used as input to a homogenization algorithm (e.g., the

so-called ‘‘long-wave’’ method [12]). Within the long-

wave method, it is assumed that the laminate thickness is

large in comparison to the periodic length of lamina

stacking so that it is justified to smear out the individual

laminae into a single homogeneous laminate.

As far as the inelastic and damage/fracture response of

the composite material is concerned, it is treated in the

same way within the composite-laminate-level model as

within the meso-scale model and, hence, will be discussed

in next section.

Meso-scale composite-material model

In this section, a brief overview is provided of the meso-

scale material model developed in a series of article by

Ladeveze and co-workers over the last two decades [1–3].

As mentioned earlier, within a meso-scale material model,

separate material models are defined for the (homogenized)

single-ply laminae and for the lamina interfaces, as well as

an algorithm for their integration into a laminate-level

material constitutive response. Consequently, the overview

of the Ladeveze meso-scale material model presented in

this section is organized accordingly.

Single-ply material modeling

When considering the mechanical response of individual

plies/laminae, the following main assumptions/approx-

imations were made in the Ladeveze meso-scale model.

(a) Due to a relatively small ply thickness, variations of

the stress, strain, and damage fields through the ply

thickness can be ignored.

(b) Material failure is controlled by progressive damage

(resulting from high local in-plane tensile and shear

stresses) and by quasi-brittle fracture (controlled by

high local compressive and through-the-thickness

shear stresses).

(c) Since damage nucleation and evolution are con-

trolled by the growth of the associated material flaws/

defects (the velocity of which is limited by a
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relativistic-effect-based terminal velocity), the rate of

damage progression is also limited.

(d) The extent of material damage can be represented by

three scalar internal-damage variables: dF (affects

materials mechanical response in the fiber direction),

d0 (affects material response in the transverse and in

the through-the-thickness directions), and d (affects

shear response of the plies). While dF is directly

linked to fiber failure within the yarns, the other two

damage variables are assumed to result from all the

remaining intra-lamina damage processes.

The main single-ply material model components within

the Ladeveze meso-scale model are: (a) a damage-evolution

law and the effect of damage on ply stiffness/compliance

and on the failure; (b) contribution of the material damage

to, and its interaction with, inelastic deformation processes;

and (c) integration of the material and stress/strain states

over an arbitrary loading path/trajectory. These three

aspects of Ladeveze meso-scale model are overviewed in

the remainder of this subsection.

It should be noted that it is customary to use the fol-

lowing Cartesian coordinate system when modeling

mechanical response of unidirectional-fiber reinforced

composite plies : x1-axis; parallel with the fiber; x2-axis;

in-plane transverse direction, and x3-axis; through the

thickness direction. Hence, this type of coordinate system

will be used in the present work.

Damage nucleation and evolution

The starting point in the Ladeveze meso-scale model is the

recognition that the elastic strain energy of a material point,

ED, is affected by the three previously defined scalar

damage variables as:

ED ¼
1

2ð1� dFÞ

"
r11h i2

E0
1

þ U �r11h ið Þ
E0

1

� m0
21
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31
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32

E0
3
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r22r33

#
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2
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E0
3

þ 1

2

"
1

ð1� d0Þ
r22h i2

E0
2
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E0
3

 !

þ 1

ð1� dÞ
r2

12
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12
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23

G0
23
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31

G0
31

� �#
; ð1Þ

where E0
1; E0

2; E0
3 are the initial (zero-damage) material

Young’s moduli, G0
12; G0

23; G0
31 the corresponding shear

moduli, while m0
12; m

0
23; m

0
31 the corresponding Poisson’s

ratios. rijði ¼ 1�3; j ¼ 1�3Þ is used to denote various

stress components, and U is a material function, which

accounts for the nonlinear (buckling induced) enhanced

compliance of the material, in the fiber direction, under

compression.

In order to provide clear distinction in the material

response to tension (when damage affects material stiff-

ness/compliance) and to compression (when this type of

effect is not present), the \[ operator is used, which

returns the value of the argument, if the argument is

positive, and returns zero, otherwise.

Since according to Eq. 1, strain energy is reduced as the

extent of internal damage increases, there is a thermody-

namic driving force (i.e., an energy-release-rate like

quantity), which governs damage evolution. Since damage

is represented by three scalar quantities, (dF, d, and d0), the

thermodynamic driving force for damage has three com-

ponents (YF, Yd, Yd0) which are defined as:

YF¼
o

odF

�ED� r:cstj

¼ 1

2ð1�dFÞ2
� r11h i2

E0
1

þU �r11h ið Þ
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1
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r11r33�
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32

E0
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þ m0
23
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Yd ¼
o

od
�ED� r:cstj ¼ 1

2ð1� dÞ2
�r2

12

G0
12

þ r2
23

G0
23

þ r2
31

G0
31

�;

ð3Þ

Yd0 ¼
o

od0
�ED� r:cstj ¼ 1

2ð1� d0Þ2
� r22h i2

E0
2

þ r33h i2

E0
3

�;

ð4Þ

where �� denotes the mean value of the argument

quantity through the ply thickness. As mentioned earlier,

the damage-evolution rates are subjected to the corre-

sponding terminal-rate constraints. Accordingly, the fol-

lowing damage-rate relations were proposed:

_dF ¼
1

sc

1� e�a fFðY1=2

F
Þ�dFh i

� �
; ð5Þ

_d ¼ 1

sc

1� e�a fdðY1=2Þ�dh i
� �

; ð6Þ

_d0 ¼ 1

sc

1� e�a f 0d Y 01=2ð Þ�d0h i
� �

; ð7Þ

where

Y ¼ sup Yd þ bYd0½ �; ð8Þ

Y 0 ¼ sup Yd0 þ b0Yd½ �; ð9Þ

fFðY1=2
F Þ ¼

ffiffiffiffiffi
YF

p
�

ffiffiffiffiffiffiffi
Y0F

pffiffiffiffiffiffiffi
YcF

p ; ð10Þ
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fdðY1=2
d Þ ¼

ffiffiffiffiffi
Yd

p
�

ffiffiffiffiffi
Y0

pffiffiffiffiffi
Yc

p ; ð11Þ

fd0 ðY1=2
d0 Þ ¼

ffiffiffiffiffiffi
Yd0
p

�
ffiffiffiffiffi
Y 00

p
ffiffiffiffiffi
Y 0c

p ; ð12Þ

where 1/sc represents the terminal damage-evolution rate,

Y0, Y0
0, Y0F, the three damage-nucleation threshold param-

eters and Yc, Yc
0, YcF are additional material-dependent

parameters. ‘‘sup’’ denotes a supreme function and is used

to account for the fact that damage is irreversible and its

extent is controlled by the highest level of the Y even

attained during arbitrary loading.

Equations 5–7, thus, define the evolution of damage

associated with an arbitrary loading path/trajectory. Under

quasi-static loading conditions, where the evolution of

damage takes place at a lower rate, damage evolution

can be simplified as: dF ¼ fF Y
1=2
F

� �
; d ¼ fd Y

1=2
d

� �
; d0 ¼

fd0 Y
1=2
d0

� �
:

As the three damage variables degrade material stiffness

parameters (as seen in Eq. 1), while damage continues to

evolve, the material’s ability to support loads progres-

sively decreases. Furthermore, under tensile x1- and/or

x2-directions, material is assumed to fail abruptly, when df

and d0 reach their respective critical values, df,crit B 1.0 and

d0crit B 1.0. Also, in accordance with Eq. 1, progressive

damage is assumed to take place only under tensile and

shear loading conditions. Under compression, on the other

hand, no damage evolution is considered and the material

fails in a brittle mode when the appropriate stress/strain

failure criteria are reached.

Inelastic deformation

Within the Ladeveze meso-scale composite-material

model, damage is assumed to affect inelastic response of

individual plies in two ways.

(a) Damage provides a contribution to the inelastic strain

to complement that associated with plastic deforma-

tion of the polymeric matrix.

(b) Damage reduces the (solid) fraction of the composite

material, which supports the load and, hence, acts as a

local stress-amplification mechanism.

In order to assess quantitatively the effect of damage on

plastic deformation of the polymeric matrix, effective

stress ~r; effective plastic strain, ~ep; and effective plastic-

strain rate _~ep; quantities are introduced. These quantities

pertain to the undamaged portion of the material and are

related to the (undamaged material ? micro-cracks-based

damage) homogenized-material quantities r; ep; e
� �

via

the plasticity-dissipation rate equality:

Tr r _ep

� 	
¼ Tr ~r _~ep

� 	
; ð13Þ

where Tr denotes a trace operator.

Specifically, effective stress quantities are defined as:

~r11 ¼ r11; ~r22 ¼
r22h i
ð1� d0Þ � �r22h i;

~r33 ¼
r33h i
ð1� d0Þ � �r33h i; ~r12 ¼

r12

ð1� dÞ;

~r23 ¼
r23

ð1� dÞ; ~r13 ¼
r13

ð1� dÞ: ð14Þ

Equation 14 reveals several aspects of the Ladeveze

meso-scale model.

(a) As the composite-material response in the x1-direction

is controlled by the (low-ductility) fibers and, when a

yarn breaks (under high enough r11 tensile stress), the

stress-concentration effects associated with the bro-

ken yarn normally lead to abrupt failure of the

surrounding material, the polymeric matrix never

develops any considerable damage with respect to the

x1-direction.

(b) For all other stress components (except for r11),

damage causes stress amplification within the poly-

meric matrix.

(c) If present, damage modifies the stress within the

polymeric matrix in tension and shear but not in

compression.

To completely define the plastic-deformation response

of the polymeric matrix, a traditional approach is utilized

which relies on the definition of: (a) a yield criterion (a

stress-based relation, which defines the condition that must

be satisfied for plastic deformation to begin/continue); (b) a

flow rule (a mathematical relation, which defines the evo-

lution of plastic-strain components during loading); and (c)

a constitutive material law (a relation defining the evolu-

tion of the material strength during deformation). These

relations are defined in more details below.

Yield criterion The yield criterion is defined by the fol-

lowing yield-function inequality relation:

f ð~r; ~RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2

12 þ ~r2
23 þ ~r2

13 þ c2ð~r2
22 þ ~r2

33Þ
q

� ~Rð~pÞ� 0;

ð15Þ

where ~R is the material strength, c2 a material-specific

coupling constant, and ~p the (accumulated) equivalent

plastic strain (a scalar component). Equation 15 simply

states that for plastic deformation to begin/continue, the

loading term (the first term on the right-hand side) must be

greater than the material deformation-resistance term (the

second-term on the right-hand side).
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Flow rule The evolution of plastic-strain components is

assumed to be governed by the so-called ‘‘associated’’ flow

rule within which the plastic-strain-rate components are

co-linear with these corresponding stress-based gradient of

the yield function (given by Eq. 15) as:

_~ep;11 ¼ 0; _~ep;22 ¼
c2~r22

~R
_~p; _~ep;33 ¼

c2~r33

~R
_~p

_~ep;12 ¼
~r12

2 ~R
_~p; _~ep;23 ¼

~r23

2 ~R
_~p; _~ep;13 ¼

~r13

2 ~R
_~p;

ð16Þ

where a raised dot is used to denote the derivative of a

quantity.

By coupling Eqs. 15 and 16, the effective plastic-strain

rate can be expressed by:

_~p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 _~e2

p;12 þ _~e2
p;23 þ _~e2

p;13

� �
þ _~e2

p;22 þ _~e2
p;33

� �
=c2

r
: ð17Þ

Material constitutive law Within the Ladeveze meso-

scale material model, a plastic deformation is assumed to

be rate-independent and leads to strain hardening, so that

material strength can be written as:

~Rð~pÞ ¼ ~R0 þ b ~pa; ð18Þ

where ~R0; b; and a are material-specific strength param-

eters.

Material/stress-state integration

The evolution of material/stress state during loading is

determined by integrating the rate-form of the Hooke’s law

in the form:

rij ¼ Cijkl ekl;el ¼ Cijkl ekl � ekl;p

� �
; ð19Þ

where Cijkl is the forth-order damage-modulated orthotro-

pic material stiffness tensor, and subscript ‘‘el’’ is used to

denote an elastic equation.

It should be noted that non-barred stress and strain

components are used in Eq. 19. The relationship between

these quantities and their effective counterparts is given by

Eqs. 13 and 14. Equation 19 represents a system of six

equations with 15 unknowns rij; ekl;p; dF; d; d0; i;
�

j; k; l ¼ 1�3Þ:
The remaining nine relations are provided by Eqs. 5–7

and 16. Thus, a self-consistent set of differential/algebraic

equations is obtained, which can be readily solved using a

numerical integration procedure.

Ply-interface material modeling

As mentioned earlier, the ply interfaces are modeled as

three-dimensional surface entities. Consequently, the inter-

facial stress state is represented by one normal, r33, and two

shears, r13 and r23; stresses. These stresses are taken to

depend, in a linear fashion, on the corresponding interfacial

displacement discontinuities (i.e., displacement differences

between the two sides of the interface). Following an anal-

ogous procedure to that used in the construction of Eq. 1, the

interfacial strain energy per unit area is defined as:

ED¼
1

2

Z
C

�r33h i2

k0
3

þ r33h i2

k0
3ð1�d3Þ

þ r2
13

k0
1ð1�d1Þ

þ r2
23

k0
2ð1�d2Þ

" #
dC

ð20Þ

where k1
0, k2

0, k3
0 are initial (damage-free) interfacial stiff-

ness parameters, while d1, d2, d3 are their respective

interfacial damage variables.

Again, the evolution of (interfacial) damage is assumed

to be controlled by the corresponding thermodynamic

forces (i.e., energy-release-rate like quantities) defined as:

Yd1
¼ r2

31

2 k0
1ð1� d1Þ2

; ð21Þ

Yd2
¼ r2

32

2 k0
2ð1� d2Þ2

; ð22Þ

Yd3
¼ r33h i2

2 k0
3ð1� d3Þ2

; ð23Þ

To account for the fact that the three basic ply-interface

fracture modes (one normal and two shears) are mutually

coupled, they are assumed to be all controlled by a single

energy-release-rate parameter, Y:

Y ¼ sup Ya
d3
þ c1Yd1
ð Þaþ c2Yd2

ð Þa
� �1=a

 �

ð24Þ

where a, c1, c2 are material parameters.

Under quasi-static loading conditions, the extent of

interfacial damage is taken to scale directly with Y as:

d1 ¼ d2 ¼ d3 � W Yð Þ ¼ n

nþ 1

Y � Y0h i
Yc � Y0


 �n

ð25Þ

where n, Y0, and Yc are again material-specific (interfacial

damage) procedures and due to strong coupling between

different damage modes, the three damage variables are

assumed to be mutually equal. Also, the magnitude of n

controls the nature of interfacial fracture, i.e., high n values

imply brittle while low values of n define progressive

interfacial fracture.

Under dynamic loading conditions, the maximum rate of

damage is limited by a defect/crack terminal growth

velocity and, hence, the ply-interface damage evolution is

governed by an equation in the form:

_d ¼ _d1 ¼ _d2 ¼ _d3 ¼
1

s0c
1� e �a0 WðYÞ�dh ið Þ
h i

: ð26Þ

It should be noted that, in contrast to the behavior of the

individual plies, ply interfaces are assumed to remain
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elastic (until failure) except for the progressive loss of their

stiffness (due to damage accumulation).

Fracture-mechanics-enriched meso-scale model

Within the (classical) meso-scale material model discussed

in the previous section, all damage modes are treated as

being continuously distributed throughout the lamina

interior or over inter-ply boundaries. While this assumption

can be justified in the case of yarn damage, fiber/matrix

de-bonding and matrix/ply-interface degradation, the same

cannot be said for transverse micro-cracking. That is, this

type of damage is manifested as discrete cracks running

parallel to the fibers. In transversely loaded plies, spacing

of these cracks decreases with loading by nucleation of

new cracks at locations half way between the existing

micro-cracks. As this process results in the formation of

new (fracture) surfaces, it should be modeled using a

fracture-mechanics approach. However, in conventional

fracture-mechanics one is generally concerned with crack

growth under increased loading while in the case of

transverse micro-cracking, crack formation, and their full

extension over the width and thickness of the lamina is

essentially instantaneous. To handle this challenge, Hashin

[9, 10] initially proposed the so-called ‘‘finite fracture-

mechanics’’ approach. This approach is adopted in the

present work and is reviewed briefly in the remainder of

this section.

Within the finite fracture-mechanics approach, it is

postulated that the density of micro-cracks, q (defined by a

dimensionless ratio of the ply thickness, H, and the average

micro-crack spacing, D) is a function of the so-called

‘‘rupture-envelope’’ potential. By recognizing that micro-

cracking is most often the result of mixed-mode loading,

the following scalar function for the rupture envelope is

proposed [11]:

�Y22 odm
22=oq

Gc
I

� �a

þ
�Y12 odm

12=oq
Gc

II

� �a

þ
�Y23 odm

23=oq
Gc

III

� �a
 �1
a

� 1;

ð27Þ

where Gc
I ; Gc

II; and Gc
III are three basic-mode fracture-

toughness values, dm
22; dm

12; and dm
23 and are three micro-

cracking induced damage variables; q is a norm-order

parameter and the three fracture-mechanics-related energy-

release rates are defined as:

�Yq ¼
oEd

oA
¼ �Y22

odm
22

oq
þ �Y12

odm
12

oq
þ �Y23

odm
23

oq


 �
; ð28Þ

�Y22 ¼ H
r22h i2

2E0
2 1� dm

22

� �2
1� d0ð Þ

� m0
23r33 r22h i

E0
2 1� dm

22

� �2

" #
; ð29Þ

�Y12 ¼ H
r2

12

2G0
12 1� dm

12

� �2
1� dð Þ

" #
; ð30Þ

�Y23 ¼ H
r2

23

2G0
23 1� dm

23

� �2
1� d0ð Þ

.
1� m0

23

1þm0
23

d0
� �

2
4

3
5; ð31Þ

where Ed is the strain energy and A fracture surface area.

Micro-crack density dependence of the three damage

variables dm
22; dm

12; and dm
23 can be defined by carrying out

the appropriate numerical simulations of micro-cracking in

laminates in which micro-cracking is treated explicitly

through the use of so-called ‘‘cohesive elements’’ [13]. An

example of these functional relationships is provided in

Fig. 2.

According to Eq. 27, micro-cracking initiation is asso-

ciated with a stress-based rupture envelope based on the

odm
22=oq; odm

12=oq; and odm
23=oq values in the limit of

q ? 0. Since, in accordance with Fig. 2, these three partial

derivatives decrease with an increase in q, the rupture

envelope expands in the r22 � r12 � r23 stress space with

an increase in q (until q reaches an experimentally

observed saturation level, qsat).

Micro-cracking fracture-toughness parameters, Gc
I ; Gc

II;

and Gc
III appearing in Eq. 27, can be obtained using simple

mechanical testing of 0�/90�/0� three ply laminates under

pure tension or shear loading conditions, or using double-

cantilever beam 0�/90� composite-laminate specimens and
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Fig. 2 Functional relations between the three damage variables

associated with transverse micro-cracking with the micro-crack

density parameter, q. The three damage parameters, respectively,

degrade the transverse Young’s modulus, the transverse shear

modulus associated with shear along the fibers, and the transverse

shear modulus associated with shear in the through-the-thickness

direction
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subjecting them to through the thickness tension at their free

tip.

It should be noted that the strain-energy functions

appearing in Eqs. 29–31 contains the effects of all damage

variables (i.e., those associated with intra-lamina and inter-

lamina diffuse damage and those corresponding to micro-

cracking induced damage).

As the three micro-cracking induced damage variables

are not independent (that is they all depend on q), inclusion

of micro-cracking adds only one more unknown (q) to the

material/stress-state computational analysis. The inclusion

of Eq. 27 then makes the system of governing equations

self-consistent in the case of the fracture-mechanics meso-

scale composite-material model.

Results and discussion

As mentioned earlier, the two main objectives of the present

work are to provide a critical overview of the classical and

fracture-mechanics-enriched material models for composite

laminates, which was done in the previous two sections. The

last main objective of the present work is to assess suit-

ability/reliability of these models as well as the laminate-

level model in predicting the structural response of com-

posite laminates (based on unidirectionally reinforced

laminae) when subjected to: (a) quasi-static simple struc-

tural loads (tension or bending) and (b) impact by an FSP. In

the absence of the corresponding experimental results, it

was assumed that the computational results (referred to as

the ‘‘reference-case’’ results) obtained using the so-called

‘‘micro-mechanics’’ approach (i.e., obtained under the

assumptions that yarn breakage, fiber/matrix de-bonding

and inter-ply delamination are continuously distributed

damage processes while transverse micro-cracking is mod-

eled as a discrete-damage phenomenon, through the use of

cohesive finite elements) are the most accurate. The ques-

tion to be answered then is the ability of the laminate-level

and the classical and fracture-mechanics-enriched meso-

scale material models to replicate the reference-case results.

Quasi-static structural response

Two simple quasi-static structural loading cases are con-

sidered: (a) in-plane tension/compression and (b) laminate

bending. A prototypical laminate consisting of four lami-

nae with a symmetric lay-up [0�/902�/0�]s (s denotes a

plane of symmetry) is analyzed. With the exception of their

orientations, each lamina was considered to be of the same

thickness (0.25 mm) and to be composed of a prototypical

carbon-fiber epoxy unidirectionally reinforced composite

material. The needed material model parameters were

taken from several articles of Ladeveze and co-workers

[1–4, 11].

All the calculations were carried out using Abaqus/

Standard, a general-purpose implicit finite-element code

[14]. Each composite-material model (including the dis-

crete micro-cracking material model for cohesive ele-

ments) is implemented into a user-material subroutine and

linked with the Abaqus/Standard solver. More details of

this procedure can be found in our previous work [15].

In-plane tension and compression

When used in structural applications, composite laminates

are often subjected to in-plane tension or compression.
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Fig. 3 Variation of the uni-axial force with the uni-axial displace-

ment in the cases of: a in-plane tension; and b in-plane compression

of a prototypical [0�/902�/0�]s carbon-fiber reinforced epoxy–matrix

composites
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While one can carry a detailed comparison between the

composite-material models under consideration with

respect to the spatial distribution of various field quantities

(e.g., stress, strain, damage, etc.), global response of the

composite laminates is of primary concern. Among the

global-response parameters are the in-plane stiffness and

its change with an increase in loading, and the ultimate

tensile/compressive strength/strain. Also, it is critical to

establish that the damage mode mainly responsible for the

ultimate failure be correctly predicted (to ensure that a

potentially good agreement with the reference-case results

is not fortuitous).

In-plane tension An example of the typical load versus

displacement curves obtained under in-plane tension is

displayed in Fig. 3a. Four curves displayed in this figure

correspond, respectively, to the reference-case results and

to the laminate-level, the classical and the fracture-

mechanics-enriched meso-scale composite-material mod-

els. In each case, laminate failure corresponds to the

condition of an abrupt drop in the load. A comparison of

the four sets of results displayed in Fig. 3a suggests the

following.

(a) While the results obtained using the three models

being investigated are in good agreement with the

reference-case results, the ones associated with the

two meso-scale models are almost identical with

the reference-case results.

(b) The level of agreement mentioned in (a) pertains to

the laminate in-plane stiffness, (and its load depen-

dence), the ultimate (failure) load as well as to the

failure displacement/strain.

Careful examination of the material-evolution results

during loading revealed that, in all four cases, damage

associated with fiber breakage in the 0� laminae and with

transverse micro-cracking in the 90� laminae is responsible

for the laminate failure (under in-plane tension). An

example of the spatial distribution of the damage param-

eters quantifying the failure-causing damage, for the four

material models, over the longitudinal median section of

the laminate at the same nominal longitudinal strain of the

laminate is displayed in Fig. 4a–d. The results displayed in

these figures reveal the following.

(a) The laminate-level material model tends to over

predict the extent of damage and does not discrim-

inate between the 0� and 90� plies.

(b) The results based on the two meso-scale models are

quite comparable with the reference-case results.

(c) It should be noted that in the reference case, Fig. 4d,

damage in the 90� plies is quantified not only by d0

but also by explicitly modeled micro-cracking via the

use of the cohesive finite elements. Hence, the overall

agreement between the fracture-mechanics enriched

meso-scale results, Fig. 4c, with the reference-case

results, Fig. 4d, was found to be the best since both

the extent of diffuse damage in 90� plies, as quantified

by d0, and the extent of discrete damage, as quantified

by d22
m , are comparable to their reference-case

counterparts.

In-plane compression An example of the typical load

versus displacement curves obtained under in-plane com-

pression is displayed in Fig. 3b. Again, four curves are

displayed, each corresponding to one of the composite-

material models analyzed while the instant of laminate

failure is indicated by an abrupt decrease in the load.

Simple comparison of the results displayed in Fig. 3b

yields similar findings regarding the level of agreement

Fig. 4 Spatial distribution of

different damage variables

which control composite-

laminate fracture under in-plane

uni-axial tension: a the

laminate-scale model;

b the classical meso-scale

model; c the fracture-mechanics

enriched meso-scale model; and

d micro-mechanics model.

Damage variable range: (0.005,

0.2); nominal axial

strain = 0.3%
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between the results based on the laminate-level, classical

meso-scale, and the fracture-mechanics-enriched meso-

scale models and the reference-case results.

It should be noted that under in-plane compression,

composite laminates do not suffer damage. Instead, due to

fiber micro-buckling, laminates tend to fail by either global

buckling, Fig. 5a, or by delamination and subsequent ply

buckling, Fig. 5b.

Laminate bending

Composite laminates used in various structural applications

are often subjected to in-service bending loads. Hence,

from the structural-design point of view, the global

response of the laminates when subjected to bending is of

major concern. An example of the results pertaining to the

variation of the bending moment with an increase in the

bend angle for a cantilever composite-laminate plate is

displayed in Fig. 6. Again, the results corresponding to all

four composite-material models are displayed in this figure

and the point of laminate failure, in each case, corresponds

to the condition of the bending-moment maximum.

Examination of the results displayed in Fig. 6 shows that

the results based on the meso-scale models are in excellent

agreement with the reference-case results. Agreement

between the results based on the laminate-level and the

reference-case results, on the other hand, is less satisfac-

tory. These findings are further supported by the results

displayed in Fig. 7a–d in which spatial distribution of the

damage variables quantifying failure-causing damage

modes are displayed for the four composite-laminate

models.

Ballistic penetration-resistance performance

As mentioned earlier, the composite material-like carbon-

fiber/epoxy is normally classified as structural-grade com-

posites whose primary requirements are high stiffness and

Fig. 7 Spatial distribution of the variables quantifying damage which

leads to initiation of failure within the composite laminate: a the

laminate-scale model; b the classical meso-scale model; c the fracture-

mechanics enriched meso-scale model; and d micro-mechanics-based

model. Damage variable range: (0.001, 0.005); Bending angle = 22�

Fig. 5 Composite-laminate in-plane compression failure due to:

a global buckling; and b ply interface delamination and subsequent

local-buckling
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Fig. 6 Variation of the bending moment with the angle of bending

for the four composite-laminate material models analyzed in the

present work
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strength. When used in military-vehicle applications, these

composites are commonly found in the body frame and

external/internal panels. In the vehicle sections (such as the

vehicle under-body) which are most likely target of the

enemy attacks these composite grades are either replaced

or complemented with the so-called armor-grade compos-

ite panels [16, 17] or with ceramic strike-face over-layers

[18]. Nevertheless, ballistic resistance of structural-grade

composites is an important aspect of their overall perfor-

mance when used in military-vehicle applications. Conse-

quently, a simple finite-element investigation of a

30-caliber steel FSP is carried out (modeled as a solid right

circular cylinder) impacting the same type of composite

laminate analyzed in the previous section (except that the

laminate contained 32 laminae). Due to the transient-

dynamic nature of the problem, Abaqus/Explicit finite-

element code was used [19]. Only the normal-obliquity

impact condition was analyzed and the material models

were again implemented into a user-material subroutine

and linked with the finite-element solver.

When addressing the ballistic resistance of an armor

panel, the so-called V50 velocity is often used as a figure of

merit. V50 represents the velocity of the impactor (an FSP,

in the present case) at which the probability for full pen-

etration of the target panel is 50%.

An example of the results pertaining to a variation in the

FSP residual velocity with and increase in the initial

velocity of the FSP is depicted in Fig. 8. The zero residual-

velocity condition associated with the highest initial veloc-

ity of the FSP is used to define a computational equivalent

of the V50. V50 is computed by first fitting each set of the

residual velocity Vres to the corresponding set of the initial

velocity Vin, data (displayed in Fig. 8) to a power-law

function in the form: Vres = a ? bVini
1/c and solving for Vini

Table 1 Results of the residual FSP velocity versus initial FSP velocity curve-fitting procedure

Material model a (m/s) b (m/s)1-1/c c R V50 (m/s)

Laminate-scale model -335.9 24.62 1.827 0.999 118.4

Classical meso-scale model -279.1 32.44 2.130 0.993 97.9

Fracture-mechanics enriched meso-scale model -356.9 60.46 2.580 0.990 97.5

Micro-scale model -500.0 103.6 2.891 0.987 94.7

Fig. 9 The spatial distribution of deformation and damage within

the laminate as predicted by the laminate-scale material model

at post-impact times of: a 15 ls, b 30 ls and c 45 ls. The

initial FSP velocity = 300 m/s. Maximum principle strain range

(0.05, 0.5)
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Fig. 8 Variation of the residual FSP velocity with a change in the

initial FSP velocity. The results of the finite-element analyses are

displayed as symbols while the corresponding curve-fitting results are

shown as lines
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for the case of Vres = 0.0. The results of this curve-fitting

procedure along with a set of correlation coefficients, R

(quantifying the goodness of fit), are displayed in Table 1.

The results displayed in Table 1 and in Fig. 8 suggest that

the laminate-level material model over-predicts V50 rela-

tive to the micro-mechanics-based material model by about

20% while both the meso-scale and the fracture-mechanics

enriched meso-scale models provide a significantly better

agreement with the micro-mechanics-based model.

Typical results pertaining to the material evolution dur-

ing FSP/laminate interactions are displayed in Figs. 9a–c,

10a–c, 11a–c and 12a–c for the four material models

analyzed. All the results were obtained under identical

impact conditions (FSP initial velocity = 300 m/s). The

corresponding results displayed in these figures were

obtained at the identical: 15, 30, and 45 lm post-impact

times. It should be noted that in the case of relatively

simple loading (e.g., in-plane tension/compression or

bending, as analyzed in the previous section), identification

of the damage variable(s), which quantifies the damage

mode that locally contributes the most to composite-lami-

nate failure, was a relatively simple task. In the case of FSP

impact onto the laminate, most damage modes were found

to be activated and to contribute comparably to the lami-

nate failure. Hence, in order to show temporal evolution

in the composite-laminate material state in the course of

impact, the extent of inelastic deformation (as quantified by

the inelastic equivalent strain) was monitored in Figs. 9a–c,

10a–c, 11a–c, and 12a–c. This quantity combines the

contribution of various damage mechanisms to inelastic

deformation.

Simple comparison of the results displayed in Figs. 9a–c,

10a–c, 11a–c, and 12a–c, which show the spatial distribu-

tion and temporal evolution of the equivalent inelastic

strain over the median section of the laminate for the four

composite-laminate material models under investigation,

revealed the following.

Fig. 10 The spatial distribution of deformation and damage within

the laminate as predicted by the classical meso-scale material

model at post-impact times of: a 15 ls, b 30 ls and c 45 ls. The

initial FSP velocity = 300 m/s. Maximum principle strain range

(0.05, 0.5)

Fig. 11 The spatial distribution of deformation and damage within

the laminate as predicted by the fracture-mechanics enriched meso-

scale model at post-impact times of: a 15 ls, b 30 ls and c 45 ls.

The initial FSP velocity = 300 m/s. Maximum principle strain range

(0.05, 0.5)
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(a) The extent of inelastic deformation is over-predicted

in the case of the laminate-level material model

(Fig. 9a–c).

(b) The remaining three material models predict fairly

comparable distributions of the inelastic strain at each

of the three post-impact times.

(c) The findings (a) and (b) made above, when combined

with those made in conjunction with Fig. 8 suggests

that the laminate-level model is not very reliable and

that the two meso-scale models provide comparable

first-order approximations to the most accurate/most

costly micro-mechanics-based model.

Spatial distribution of two damage variables, df, (quan-

tifies the extent of fiber breakage within the yarns) and d0

(quantifies the extent of fiber/matrix de-bonding and dif-

fuse matrix-damage) are displayed in Figs. 13a, b, 14a, b,

15a, b, and 16a, b, for the four composite laminate models,

respectively. In addition, spatial distribution of the micro-

crack density, q, for the case of the fracture-mechanics-

enriched meso-scale material model is displayed in

Fig. 15c. Simple examination of the results displayed in

these figures suggests the following.

(a) Fiber breakage, as expected, is the dominant mode of

damage in the region around the penetration hole.

Fig. 12 The spatial distribution of deformation and damage within

the laminate as predicted by the micro-mechanics-based model at

post-impact times of: a 15 ls, b 30 ls and c 45 ls. The initial FSP

velocity = 300 m/s. Maximum principle strain range (0.05, 0.5)

Fig. 13 The spatial distribution of damage variables at 30 lm FSP

post-impact time within the laminate as predicted by the laminate-

based material model: a df—range (0.005, 0.05) and b d0—range

(0.025, 0.25)

Fig. 14 The spatial distribution of damage variables at 30 lm FSP

post-impact time within the laminate as predicted by the meso-scale

material model: a df—range (0.005, 0.05) and b d0—range (0.025,

0.25)
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(b) The extent of damage is significantly over-predicted

by the laminate-level model, Fig. 13a, b, while the

two meso-scale models somewhat under-predicted the

same, Figs. 14a, b and 15a, b.

(c) The extent of agreement is slightly improved when the

effect of micro-cracking density, q, is included,

Fig. 15c. This suggests that the use of fracture-

mechanics enrichment in the meso-scale material

model, which does not require significant additional

(typically less than 20%) computational cost, may be

beneficial.

Summary and conclusions

Based on the results obtained in the present work, the

following main summary remarks and conclusions can be

drawn.

1. A critical overview is provided of the laminate-level,

classical meso-scale, fracture-mechanics-enriched meso-

scale, and micro-mechanics material models for

unidirectional-fiber-reinforced polymer–matrix com-

posite laminates.

2. To assess suitability of these material models for use in

structural-mechanics and ballistic-resistance computa-

tional investigations, a number of finite-element-based

analyses (i.e., in-plane tension/compression, bending,

normal impact by a projectile, etc.) is carried out and

the corresponding results compared.

3. The results obtained suggest that fracture-mechanics-

enriched meso-scale composite-laminate material

model is currently the best compromise between

computational efficiency and fidelity/physical-reality.
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